3 research outputs found

    Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review

    Get PDF
    Background: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare

    Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with <sup>177</sup>Lu-PSMA

    No full text
    Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PSMA-PET/CT) scans can facilitate diagnosis and treatment of prostate disease. Radiomics signature (RS) is widely used for the analysis of overall survival (OS) in cancer diseases. This study aims at investigating the role of radiomics features (RFs) and RS from pretherapeutic gallium-68 (68Ga)-PSMA-PET/CT findings and patient-specific clinical parameters to analyze overall survival of prostate cancer (PC) patients when treated with lutethium-177 (177Lu)-PSMA. A cohort of 83 patients with advanced PC was retrospectively analyzed. Average values of 73 RFs of 2070 malignant hotspots as well as 22 clinical parameters were analyzed for each patient. From the Cox proportional hazard model, the least absolute shrinkage and selection operator (LASSO) regularization method is used to select most relevant features (standardized uptake value (SUV)Min and kurtosis with the coefficients of 0.984 and −0.118, respectively) and to calculate the RS from the RFs. Kaplan–Meier (KM) estimator was used to analyze the potential of RFs and conventional clinical parameters, such as metabolic tumor volume (MTV) and standardized uptake value (SUV) for the prediction of survival. As a result, SUVMin, kurtosis, the calculated RS, SUVMean, as well as Hemoglobin (Hb)1, C-reactive protein (CRP)1, and ECOG1 (clinical parameters) achieved p-values less than 0.05, which suggest the potential of findings from 68Ga-PSMA-PET/CT scans as well as patient-specific clinical parameters for the prediction of OS for patients with advanced PC treated with 177Lu-PSMA therapy

    Estimating the Potential of Radiomics Features and Radiomics Signature from Pretherapeutic PSMA-PET-CT Scans and Clinical Data for Prediction of Overall Survival When Treated with 177Lu-PSMA

    No full text
    Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PSMA-PET/CT) scans can facilitate diagnosis and treatment of prostate disease. Radiomics signature (RS) is widely used for the analysis of overall survival (OS) in cancer diseases. This study aims at investigating the role of radiomics features (RFs) and RS from pretherapeutic gallium-68 (68Ga)-PSMA-PET/CT findings and patient-specific clinical parameters to analyze overall survival of prostate cancer (PC) patients when treated with lutethium-177 (177Lu)-PSMA. A cohort of 83 patients with advanced PC was retrospectively analyzed. Average values of 73 RFs of 2070 malignant hotspots as well as 22 clinical parameters were analyzed for each patient. From the Cox proportional hazard model, the least absolute shrinkage and selection operator (LASSO) regularization method is used to select most relevant features (standardized uptake value (SUV)Min and kurtosis with the coefficients of 0.984 and &minus;0.118, respectively) and to calculate the RS from the RFs. Kaplan&ndash;Meier (KM) estimator was used to analyze the potential of RFs and conventional clinical parameters, such as metabolic tumor volume (MTV) and standardized uptake value (SUV) for the prediction of survival. As a result, SUVMin, kurtosis, the calculated RS, SUVMean, as well as Hemoglobin (Hb)1, C-reactive protein (CRP)1, and ECOG1 (clinical parameters) achieved p-values less than 0.05, which suggest the potential of findings from 68Ga-PSMA-PET/CT scans as well as patient-specific clinical parameters for the prediction of OS for patients with advanced PC treated with 177Lu-PSMA therapy
    corecore